$a_n=1$이고, 모든 자연수 $n$에 대해\[a_{n+1}={1\over2+a_n}\]을 만족하는 수열 $a_n$의 일반항을 구하시오.비선형 점화식에 대한 일반적인 풀이는 알려져 있지 않아요. 수열을 변형해서 선형 점화식으로 만들어 푸는 게 보통이죠.문제의 주어진 점화식처럼 분모에 수열의 항이 있거나 여러 항의 곱이 나타나는 경우는 역수를 이용해서 선형 점화식으로 만들죠.\[\frac1{b_{n+1}}=\frac\alpha{b_n}+\beta\]와 같이 수열의 역수가 선형 점화식을 만족한다면\[b_{n+1}={b_n\over\alpha+\beta b_n}\]이라는 점화식을 얻을 수 있어요.위의 식에 맞춰 주어진 점화식을 변형해 보면\[p+a_{n+1}={1+2p+pa_n\over2+a_n}={\fra..