728x90
728x90

매개변수 방정식 3

[desmos] 곡선을 그려보자. - 하이포사이클로이드

에피사이클로이드를 소개하면서 함께 설명했던 것처럼, 하이포사이클로이드는 고정된 원을 따라 그 내부에서 굴러가는 원 위의 한 점이 지나는 궤적을 말해요.위의 곡선은 하이포사이클로이드 중 하나인 델토이드 deltoid예요. 보시다시피 굴러가는 원이 고정된 원의 $1\over3$이죠. 물론 이 곡선도 에피사이클로이드처럼 두 원의 비에 따라 곡선이 달라지죠. 하지만 지난 글에도 이야기한 것처럼 그릴 때 고려할 점이 많이 달라요.먼저 고정된 원 내부에 생기는 곡선이니 지난번처럼 표현하는 영역을 신경 쓸 필요가 없어요. 대신 굴러가는 원이 내부에 들어가려면 더 작아야 하죠. 또한 에피사이클로이드와 다르게 같은 비가 아니라도 같은 곡선이 나오기도 해요. 물론 비가 무리수가 되면 곡선이 같은 궤적을 반복하지 않는다는 ..

[desmos] 곡선을 그려보자. - 에피사이클로이드

지난번에 그려봤던 사이클로이드는 직선 위를 굴러가는 원으로 만들었죠. 에피사이클로이드 epicycloid와 하이포사이클로이드 hypocycloid는 직선이 아니라 원 위를 굴러가는 원으로 만들어요.평면에서 원 위를 다른 원이 굴러가려면, 내부와 외부의 경우로 나뉘죠. 외부에서 굴러가며 만들어지는 곡선을 에피사이클로이드, 내부의 경우 하이포사이클로이드라고 해요.위의 곡선이 에피사이클로이드 중 하나인 심장형 곡선, 카디오이드 cardioid예요. 기준이 되는 고정된 원(기초원)과 굴러가는 원(구름원 epicycle)의 반지름이 같은 경우죠. 에피사이클로이드는 두 원의 반지름 길이 비에 따라 모양이 달라져요. 기초원의 반지름 길이가 구름원의 유리수 $p\over q$ ($p$와 $q$는 서로소인 양의 정수) ..

[desmos] 곡선을 그려보자. - 사이클로이드

오늘은 desmos 연습으로 사이클로이드 곡선을 표현해 볼게요.사이클로이드 cycloid는 직선 위를 굴러가는 원 위의 한 점이 그리는 궤적을 나타내는 곡선이에요.위 그림은 반지름 1인 원이 $x$축 위를 굴러갈 때 원점을 지나는 원 위의 한 점이 그리는 사이클로이드죠. 사실 곡선 자체는 그리 어렵지 않게 그릴 수 있어요. 검색만 조금 해봐도 곡선의 식은 쉽게 알 수 있으니까요.\[x=r(t-\sin t),\quad y=r(1-\cos t).\]위의 식이 잘 알려진 사이클로이드의 매개변수 방정식이에요. 원의 반지름인 $r$의 값을 정해 $r(t-\sin t,1-\cos t)$라고 입력하고, $t$의 범위만 지정해 주면 곡선이 그려지죠.desmos는 $t$를 자연스럽게 매개변수로 인식해요. $t$에 대한 ..

728x90
728x90