728x90
728x90

누군가의 구조요청 [문제 풀이] 10

[문제 풀이] 자릿수의 합

$4444^{4444}$의 각 자릿수의 합을 $A$, $A$의 각 자릿수의 합을 $B$라 할 때, $B$의 각 자릿수의 합을 구하시오.주어진 자연수의 각 자릿수를 더해서 나온 수에 대해 다시 각 자릿수를 더하는 것을 계속 반복하면, 결국 1에서 9까지의 자연수 중 하나가 나오죠. 그럼 이 수는 어떤 수가 될까요?이건 9의 배수의 성질을 가지고 생각할 수 있는 문제예요.십진법으로 표현된 $n$자리 자연수는\[10^{n-1}d_{n-1}+10^{n-2}d_{n-2}+\cdots+10^0d_0\]이라고 표현할 수 있어요. 각 $10^k$의 자리가 $d_k$인 거죠. 각 자릿수의 합 $d_{n-1}+d_{n-2}+\cdots+d_0$를 비교하면 그 차가\[\overbrace{99\cdots9}^{n-2}d_{n..

[문제 풀이] 비선형 점화식을 가지는 수열의 일반항

$a_n=1$이고, 모든 자연수 $n$에 대해\[a_{n+1}={1\over2+a_n}\]을 만족하는 수열 $a_n$의 일반항을 구하시오.비선형 점화식에 대한 일반적인 풀이는 알려져 있지 않아요. 수열을 변형해서 선형 점화식으로 만들어 푸는 게 보통이죠.문제의 주어진 점화식처럼 분모에 수열의 항이 있거나 여러 항의 곱이 나타나는 경우는 역수를 이용해서 선형 점화식으로 만들죠.\[\frac1{b_{n+1}}=\frac\alpha{b_n}+\beta\]와 같이 수열의 역수가 선형 점화식을 만족한다면\[b_{n+1}={b_n\over\alpha+\beta b_n}\]이라는 점화식을 얻을 수 있어요.위의 식에 맞춰 주어진 점화식을 변형해 보면\[p+a_{n+1}={1+2p+pa_n\over2+a_n}={\fra..

[문제 풀이] 면적분, 발산 정리의 응용

$S$는 곡면 $x^2+y^2+z^2=1,\quad x+y+z\ge1$이다. $F(x,y,z)=(z+1,0,x+y)$일 때 $\abs{\iint_SF\cdot dS}$의 값은?사실 저는 이 벡터장에 대한 면적분의 표현방법을 그리 좋아하지 않아요. 물론 이해하고 나면 구분할 수 있지만, 처음 배우는 분들은 헷갈리기 쉬운 표기죠. 제 생각엔 표기에 일관성도 부족해 보여요. 스칼라장에 대한 면적분으로 표현해 보면\[\abs{\iint_SF\cdot\eta dS}\]라고 쓸 수 있죠. 여기서 $\eta$는 곡면 $S$의 단위 법벡터를 나타내는 벡터장이에요.이 적분은 3차원 공간의 각 점에서 $F$라는 힘이 작용할 때 $S$를 지나는 힘의 크기를 구하는 거죠. 그래서 수직방향의 힘의 크기를 적분하는 거예요. 물론..

[문제 풀이] 연속하는 자연수의 합으로 나타낼 수 있는 자연수

2의 거듭제곱이 아닌 자연수를 둘 이상의 연속하는 자연수의 합으로 나타내기 위한 일반적인 방법을 찾고 설명하시오.중학교 2학년인 학생분이 올린 질문이에요. 발상이 어렵지는 않지만, 풀이의 설명이 이해하기 힘들었던 것 같아요.2의 거듭제곱은 음이 아닌 정수 $k$에 대해 $2^k$를 말하죠. 1, 2, 4, 8 등의 수예요.어떤 자연수가 2의 거듭제곱이 아니기 위해서는 그 소인수분해에 2가 아닌 소인수, 즉, 홀수인 소인수가 있어야 하죠. 소인수분해에서 2의 거듭제곱인 부분을 제외한 나머지는 홀수의 곱 만으로 나타나니 홀수가 되고, 3 이상의 자연수들의 곱이니 자연수 $m$에 대해 $2m+1$로 쓸 수 있어요.즉, 2의 거듭제곱이 아닌 자연수는 $2^k(2m+1)$로 나타낼 수 있죠. 이 수를 어떤 자연수..

[문제 풀이] 위상수학 - 일반위상에서 점렬의 수렴

$a(1) $\p{2+\frac12,2+\frac13,2+\frac14,\ldots}$,(2) $\p{\sqrt2+\frac12,\sqrt2+\frac13,\sqrt2+\frac14,\ldots}$.$\cal S$가 생성하는 위상은 $\cal S$를 부분기저 subbase로 가지는 가장 작은 위상이죠. 기저 base는 그 원소들의 합집합으로 모든 개집합을 만들 수 있는 집합족이고, 부분기저는 그 원소들의 유한교집합으로 기저를 구성할 수 있는 집합족이에요.$\cal S$의 원소를 유한합집합해서 만들 수 있는 집합은 $\emp$과 전체 공간인 $\R$, 유리수의 단집합, 그리고 $\cal S$의 원소예요. $\R$을 교집합으로 만들 수 있다는 것에 아직 익숙하지 않은 분을 위해 설명하자면, 전체 공간은 교집..

[문제 풀이] 원의 내접사각형

다음 그림과 같이 예각삼각형 ABC의 두 꼭짓점 A, B에서 각각의 대변에 그은 두 수선의 교점을 P라고 하자. 삼각형 ABC의 외접원의 반지름의 길이를 4라고 할 때, $\rm\ls{AP}^2+\ls{BC}^2$의 값은?최근에 지식iN에 올라왔던 질문이에요. 보조선을 그릴만 한 곳이 바로 보이지는 않는 조금 까다로운 문제네요.제목에서 눈치채시겠지만 이 문제는 보조선으로 내접사각형을 그리면 되는 문제죠.위 그림처럼 선분 AP와 BP에 평행한 직선을 각각 점 B와 A를 지나도록 그리고, 그 교점을 Q라 할게요. 사각형 AQBP는 당연히 평행사변형이죠. 그리고 점 P가 수선의 교점이니 선분 AQ와 BQ는 각각 AC와 BC에 수직이에요.이제 사각형 AQBC를 살펴보면 그림의 원에 내접하는 사각형이라는 것을 알..

[문제 풀이] 삼각형의 수심과 외심

삼각형 ABC의 변 BC를 지름으로 하는 원과 나머지 두 변 AB와 AC가 만나는 점을 각각 P와 Q라 할 때, $\rm\ls{CP}$와 $\rm\ls{BQ}$의 교점을 H라 하고, 삼각형 HAB, HBC, HCA의 외심을 각각 $\rm O_1,O_2,O_3$라 하자. 이때, 점 H로부터 $\rm O_1,O_2,O_3$에 이르는 거리를 비교하시오.이 문제는 삼각형의 수심과 외심의 관계에 대해 묻는 문제예요. 사실 "삼각형의 외심은 그 중점삼각형의 수심이다"라는 정리만 알면 바로 풀리는 문제죠. 물론 바로라고 해도 보조선 하나 긋지 않고 말하긴 어렵지만요.위 문제의 그림은 desmos의 기하학 도구를 이용해 지식iN에 올라왔던 문제의 그림을 제가 직접 그린 거예요. 여기에 필요한 보조선을 추가해 보면 아래..

[문제 풀이] 삼각함수

반지름의 길이가 $R\p{5$\rm\ls{AB}=\ls{AD}$이고 $\rm\ls{AC}=10$이다.사각형 ABCD의 넓이는 40이다.선분 BD와 $R$의 비를 구하시오.선분 AC의 길이와 사각형 ABCD의 넓이를 알고 있으므로 밑변을 AC로 했을 때 삼각형 ABC와 ACD의 높이의 합이 8이라는 것을 알 수 있죠. $\rm\ls{AB}=\ls{AD}$이므로 원의 중심을 O라 하면 선분 OA는 BD를 수직이등분해요.위에서 말한 높이의 합이 8이라는 건, 선분 AC와 BD가 이루는 각을 $\th$라 할 때, $\ls{\rm BD}\sin\th=8$이라는 거죠. 선분 AC의 중점을 M이라 하고 직각삼각형 OMA를 살펴보면 $\rm\ls{AC}=10$으로부터 $R\cos\p{\frac\pi2-\th}=R\si..

[문제 풀이] 미적분

함수 $f(x)={ln|x|\over x^n}$($n$은 자연수)와 양수 $t$에 대해 곡선 $y=f(x)$ 위의 점 $\p{t,f(t)}$에서의 접선의 방정식을 $y=g(x)$라 할 때, 0이 아닌 모든 실수에서 함수 $|f(x)-g(x)|$가 미분가능하게 하는 $t$의 최댓값 $\alpha_n$을 구하시오.$f(x)-g(x)$는 0이 아닌 모든 실수에서 미분가능이므로 $|f(x)-g(x)|$가 $a$에서 미분불가능이라면 $f(a)-g(a)=0$이고 $f'(a)-g'(a)\ne0$이죠. 즉, 0이 아닌 모든 실수에서 $|f(x)-g(x)|$가 미분가능이려면 $y=f(x)$와 $y=g(x)$의 교점이 모두 접점이어야 해요.$f'(x)={1-n\ln|x|\over x^{n+1}}$이고\[f''(x)=-{n..

[문제 풀이] 원주각의 성질

GeoGebra를 연습 중에 질문받은 내용을 이미지로 만들어봤어요. 앞으로 종종 이렇게 문제 풀이도 올려보도록 할게요.그림과 같이 길이가 6인 선분 AB를 지름으로 하는 반원의 호 위의 두 점 C와 D에 대해 $\ls{\rm BC}=\ls{\rm CD}=2$일 때, 사각형 ABCD의 넓이를 구하시오.원주각의 성질을 이용해 합동인 직각삼각형을 찾고 이등변삼각형의 닮음을 이용해 넓이를 계산할게요.위 그림처럼 직선 AD와 BC의 교점을 E라 하면 각 ACB가 반원의 원주각이니 $\frac\pi2$=90°이고 호 BC와 CD의 길이가 같으니 원주각인 각 BAC와 EAC가 같죠. 즉, 직각삼각형 ABC와 AEC는 ASA합동이에요.$\ls{\rm AE}=\ls{\rm AB}=6$이고 $\ls{\rm BC}=\ls{..

728x90
728x90