수학에 흥미가 있으신 분은 제목에 있는 식을 본 적이 있을 거예요. 흔히 오일러 공식 Euler's formula이라고 하지만, 정확히는 그중에서도 각이 $\pi$인 특수한 경우죠. 정확한 공식은\[e^{i\th}=\cos\th+i\sin\th\]예요. 이 공식을 제대로 이해하기 위해서는 테일러 정리 Taylor's theorem 등의 대학교 과정의 지식이 필요하죠. 적어도 미분에 대해 전혀 지식이 없다면 이해하기 힘든 내용이에요.하지만 $e$나 $\pi$라는 무리수와 $i$라는 허수로 만든 수에 1을 더하니 0이라는 사실은 굉장히 신기하고 재밌죠. 원래의 공식을 살펴보더라도 양변을 $\th$로 미분했을 때 어떤지 살펴보면 상당히 재밌어요.\[{d\over d\th}e^{i\th}=ie^{i\th},\q..